Intelligence Core
Understand pattern detection, anomaly tracking, and real-time insight layers.
The Intelligence Core is Wolvo's real-time signal processing engine. It ingests data streams, detects patterns, identifies anomalies, and generates actionable insights that can trigger automated workflows.
Key Capability: Process thousands of signals per second with sub-50ms latency for real-time decision making.
Signal Processing
Signals are the fundamental data units in Wolvo. They can come from various sources:
On-chain Events
Transactions, token transfers, program invocations.
External APIs
Price feeds, market data, social signals.
Custom Sources
Your own data streams via webhooks.
// Subscribe to signals
client.signals.subscribe({
sources: ['solana-transactions', 'price-feeds'],
filters: {
minValue: 1000,
tokens: ['SOL', 'USDC']
}
})
// Handle incoming signals
client.on('signal', (signal) => {
console.log('Type:', signal.type)
console.log('Source:', signal.source)
console.log('Data:', signal.payload)
console.log('Timestamp:', signal.timestamp)
})Pattern Detection
Wolvo can detect various patterns in your signal streams:
Frequency Patterns
Detect repeated occurrences within time windows (e.g., 10+ transactions in 1 minute).
Threshold Patterns
Trigger when values cross specified thresholds (e.g., volume > $1M).
Sequence Patterns
Identify specific sequences of events (e.g., deposit → swap → withdraw).
Correlation Patterns
Find relationships between different signals (e.g., price vs volume correlation).
const pattern = await client.patterns.create({
name: 'High Volume Alert',
type: 'threshold',
signal: 'trading-volume',
condition: {
field: 'volume_usd',
operator: 'gt',
value: 1000000
},
window: '5m',
cooldown: '15m' // Prevent alert spam
})Anomaly Tracking
The anomaly detection system uses statistical models to identify unusual behavior:
Detection Methods
const detector = await client.anomalies.create({
name: 'Unusual Activity Detector',
signal: 'transaction-count',
method: 'zscore',
threshold: 3.0, // 3 standard deviations
baseline: '7d', // 7-day baseline
sensitivity: 'high'
})
client.on('anomaly', (event) => {
console.log('Anomaly detected:', event.type)
console.log('Severity:', event.severity)
console.log('Details:', event.details)
})Custom Analyzers
Build custom analyzers to process signals with your own logic:
const analyzer = await client.analyzers.create({
name: 'Whale Tracker',
handler: async (signal, context) => {
// Custom logic
if (signal.value > 100000) {
return {
insight: 'whale_detected',
confidence: 0.95,
data: {
wallet: signal.from,
amount: signal.value,
token: signal.token
}
}
}
return null
}
})
// Insights from custom analyzers trigger workflows
client.on('insight', (insight) => {
console.log('Custom insight:', insight)
})